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Resume! 

Nous dkrivons une mkthode rt‘currente de dktermination des facteurs spkciaux de suites 
automatiques. 

Abstract 

We give an inductive method to determine the special factors of some automatic sequences. 

1. Introduction 

The study of factors of infinite sequences goes back at least to Thue [lo, 111. Among 
the questions which have been addressed is the problem of computing the complexity 
function P, where P(n) is the number of factors of length n. 

We quote here some results obtained by the analysis of the special factors of 
particular sequences on sets of two elements: 
~ computing the complexity function of the Thue-Morse sequence [3,6] and the 

Fibonacci’s one [a]. 
~ construction of an automaton for computing the sequence P(n + 1)-P(n) for some 

infinite words [9]. 
The study of the special factors of sequences whose complexity function is 2n + 1 

(therefore defined on sets of three elements) and satisfying some technical require- 
ments, show that they can be represented by an exchange of six intervals [l]. (This 
extends a classical result on representation of Sturmian sequences by rotations [8]). 
The sequence is represented by a graph which is used as a foundation to build a kind 
of abstract generalization of continued fraction expansion, on three elements. The 
proofs use classical results of graph theory and can easily be extended to sequences 
whose complexity function is (k + 1)n + 1 (therefore defined on sets of k elements) and 
satisfying the following condition (*): 
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(*) For any integer n, there exists a unique special factor of length n. Such sequences 
can be represented by an exchange of 2k intervals. 

We think that a generalization of the procedure used in [l] will allow us to get 
a geometric representation of (at least) sequences with linear increase. Before trying to 
get an eventual representation, we have to investigate sequences satisfying (*). 

Our aim is to give an inductive method to determine the special factors of 
automatic sequences (fixed points of injective constant length substitutions) without 
constraint in the number of the elements of the set. This (certainly) will make us know 
more about sequences satisfying (*). 

2. Preliminaries 

Let A* be the free monoid generated by a non-empty finite set A called alphabet. 
The elements of A are called letters and those of A* words. For any word L’ in A*, IuI 
denotes the length of L’, namely the number of its letters. The identity element of A* 
denoted by E is the empty word; it is the word of length 0. A word u is said to be 
a factor of M’ if M’ = xcy for some x, 4’ in A*. We then write u ( w. If x = E (resp. J’ = E), 
11 is called a prefix (resp. suffix) of u!. A prefix or a suffix of u’ is said to be a strict one if it 
is different from M’. 

We denote by M(A) the set A* u.4” where A” is the set of infinite words with letters 
in A. 

We call substitution, a morphism f : A + A*. It can be naturally extended to 
a morphism from A* to A*. A substitution is said to be a constant length CJ substitu- 
tion if u = If(i)1 for any letter i of A. If there exists a letter a E A such that f(a) = urn 
with Irnl > 0. then the set of words with prefix a has a fixed point u = am f(m) 
f+n) j-k(m) . . . 

Let k 2 2 be an integer and let [k] denote the set (0, 1, , k - 1). A k-automaton is 
given by 

(i) to alphabets C and E, 
(ii) an initial point x0 E C, 

(iii) an application 40: [k] x C + C, 

(iv) an application r : Z + E. 

For any couple (j, x) E [k] x C, let cp(j, x) = j(x) or more simply jx. The application 
cp : [k] x C + C can be naturally extended to an application from [k]* x C to C in this 
way: let e,,e,_i, . . . , e, E [k] and let .x E C. Inductively, set ese,_ 1 . co(x) 

= e,e,_l . . . el (co(x)) and (~(8, x) = x. 
Let n 2 1 be an integer. We develop n as follows: n = CJ?Eoej(n) kJ. Let g be the 

largest integer contained in log n/log k. If j > g put ej(n) = 0 and e,(n) # 0. Therefore, 
n can be represented by e,(n) es_ i(n) . co(n) E [k]* and 0 is represented by the empty 
word. For any x E C, define KY = e,(n) e,_ 1(n) co(n) X. Then when IZ strokes the 
sequence of all integers, (I~x~),,~ is an infinite sequence of elements in E and 
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(dn-~o))ntN is an infinite sequence of elements in E. A sequence t is said to be 
k-recognizable if there exists a k-automaton (1, x0, q, E, T) such that t = (t(n.~~)),,~.~. 

We have the following result [4]. 

Proposition 1. Let E he a not empty jinite set, t = (t,) E EN and k a prime integer. Then 

the .following are equivalent: 

(i) The sequence t is recognizable by a k-automaton. 

(ii) t is generated by a substitution of constant length k. 

(iii) There exists a jinite $eld K of characteristic k and an injective application 

x : E + K such that a(t) is algebraic ov?er K [Xl. 

Remark 1. Without supposing k prime, the equivalence between (i) and (ii) has been 
proved in [S]. 

Example 1. The sequence 1 < 2 < 4 < 7 < 8 < . . of the integers which sum of the 
digits in their base 2 expansion is odd is recognizable by the 2-automaton 
(Z,.YO,C~,E,T) where C=(i,s}, E=(O,l), .x0 = i, cp(O,i) = i, cp(O,s) = s, cp(1.i) = s. 

~(1, s) = i, z(i) = 0, z(s) = 1. Note that it is the fixed point in OA* of the substitution 
f. on the alphabet A = {O,l) defined by fo(0) = 01 and fo(l) = 10. 

Let u be a finite or infinite word. We denote by F(u) the set of finite factors of u and 
by F,(u) its subset consisting of the factors of length n. If u is an infinite word, it is 
trivial to verify that every factor of a word ~1 of F(u) is a word of F(u) and that there 
exists a letter a such that va is in the set F(u). The factor v of u is said to be special if for 
any letter i of A, vi is a factor of U. Denote by F’S(u) the set of the special factors of 
II and by F&(u) the set of the special factors of length II. 

Let S be the shift defined by S(ao a1 u2 . ) = a, a2 . . . and let Q be the closure of the 

set [Sk(u); k E N) where the distance d is given by d(v, w) = exp(-inf{n E N; z:, # w,i ). 
The sequence u is associated with the dynamical system (Q, T ) (where T is the 
restriction of S to CJ and it is said to be minimal when the empty set and 52 are the only 
closed subsets of 52 invariant under T. 

Example 2. The Morse sequence, fixed point in lA* of the substitution f; on the 
alphabet A = { 1.2) defined by fi(l) = 12,,f, (2) = 21 is minimal. 

Example 3. The fixed point in 1.4* of the substitution f2 on the alphabet A = { 1.2,3 1 

defined by f2(l) = 121,&(2) = 232 and f2(3) = 323 is not minimal. 

The following classical characterization has been proved in [7]. 

Proposition 2. The word u is minimal ifand only if for any jactor m of u, there exists an 
integer j depending on m such that 

for anJ> kE N, mlukuk+I . . . uk+j. 
(1) 
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Remark 2. The Condition (1) means that every factor m of u appears in 11 with 

bounded lacunas. 

We give here a simple criterium for minimality. 

Proposition 3. Let u be a fixed point of the substitution ,f on the alphabet A. If a is 

a preji.u of u with 1 f (u)I 2 2 and if erery letter of A is (I factor of u, then the following are 

equinalent: 

(i) u is minimal and lim 1 f k(b)l = + CC for every letter b E A. 

(ii) There exists L I Card(A) such that for any b E A,a 1 f L(b). 

(iii) For any b E A, there exists k(b) E N such that a 1 ,f k’h)(b). 

Proof. (i) 3 (iii) is a consequence of Proposition 2 and of the fact that every letter of 

A is a factor of u. Let us suppose (iii) and let us prove (ii). We set L = Max (k(b); b E A] 

where k(b) = Min In; a 1 f”(b)). As a 1 f(a), one has a I f”(b) for every s 2 k(b). Hence, 

a If L(b) for every b E A. Furthermore, for any letter b # a, there is a letter c such that 

ii(c) = k(b) - 1; hence L 2 Card(A). Let us suppose (ii) and let us prove (i). In 

particular, 1 f (b)l > 0 for every b E A. As f(a) E aA+. lim 1 f “(a)1 = + m. For every 

b,a 1 f L(b); hence, lim) f k(b)l = + #xv. As a is prefix of u note that u =f”‘(a). Let PFI be 

a factor of u: There is j such that m 1 fj(a). Hence, IFI I f “‘L(b) for every b E A. 

So m appears in u with lacunas bounded by 2(Max i 1 f(b)l; h E A) )J+’ - 2. By 

Proposition 2, u is minimal. lJ 

From now, we will consider minimal sequence u, fixed points of injective constant 

length [r substitutions which are not periodic. 

3. Some properties of factors and special factors 

Let \t‘ be a factor of u. It can be decomposed as follows: 

u’ = xf (c)y. (2) 

In (2) x is a strict suffix of a word f (rl), y is a strict prefix of a word f (rz) and rl, r2 E A. 

A factor M’ of u is said to be rythmical if it has a unique decomposition with 

condition (2). 

Example 4. In the Morse sequence, 122 and 221 are rythmical while 121 and 212 are 

not rythmical. 

Proposition 4. Ifthere exists a rythmical fuctor R of u with I RI 2 o. then ever)! ,fuctor of 
u which has R as a factor is rythmical. 

Proof. Let 1~1 be a factor of u such that R is a factor of m. The decomposition of u by 

blocks of c letters, namely u = f (u,-J f (uI) . gives a decomposition of R read in m. 
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Since there is only one decomposition, one has a prefix B of a word in,f(A) of length 

IBI < asuchthatifR = &&+i . . . uk +y. then k + 1 B 1 is a multiple of 0. The position of 

u~+,~, in R, and so in m, gives a decomposition of m induced by that of u, but which 

does not depend on the reading of IIZ in U. Let VI = x(rnr)(mJ (m,)/Y be this 

decomposition, where the words m, belong to f(A), and, r like fl satisfy Ia I. I PI < 0.’ 

Since .f’ is injective, m is a rythmical factor. 0 

Let m and u be in A*. u is said to be a “bifix” of m if it is both a prefix and a suffix of ~1. 

Hence, there exists 1’ and ~1’ in A* such that 111 = ~11’ = 1”~. 

The following two lemmas describe the structure of factors which have the same 

“bifixes”. 

Lemma 1. Let m, u rrnd L’ he fhctors such that m = ML’ = L’U, u and I’ non-empty, and let 

us set d = gcd( IL!/, IP[). Then m = pr where p is the prefix oj‘m oflength d und Y = lm l/d. 

Proof. Let us first prove that for Ii = E(lrnl/I~I) ( w h ere E(X) denotes the largest 

integer contained in the real X) one has m = p(v)ok = t’p(zl)~~- ’ where p(v) is the prefix 

of r of length IUZI - cil~‘l. This decomposition is trivial if 1 UI I IL’I since in this case one 

has u = p(r) and k = 1. Let us suppose I UI > 11‘1; from UL’ = L’U one derives u = PU’ so 

that LU’~ = LVU’ and U’P = PU’. Inductively, u = P~U” with l~“l < I v( and u”11 = ra” so 

that U” = p(r) and m has the required form. 

The lemma is clearly true if I UI = (ul or if one of the factors u or 11 is a letter. Let us 

suppose the lemma true for factors r~i such that I ml < K. We can suppose I u I > Iz~l, and 

the preceding argument gives m = p(a)vk = u~(u)z’~-~. Then m’ = p(tl)o( =vp(c)) and 

I& < K. Furthermore, gcd(lul,Ir/) = gcd((tll,Ip(v)l) = d, so that by the induction 

hypothesis ?n’ = II*’ with r’ = Im’l/d and n a prefix of I’. 

Hence, there exists two integers s and t such that p(v) = nsd and I’ = ntd. Finally. 
,,l = rrSd+A’d. 0 

Lemma 2. Let m, u, 17 und 1:’ be factors such thut m = uz’ = z.‘u and UP’ = vu. Then 

r = 1” and m E p * where p is the pwfix of m of length gcd ( 1 II 1. / L: ( ). 

Proof. If (u( 2 IP/( = Itl’l), 13 and c’ are both prefixes of u and have the same length. 

Then 1’ = 1” and Lemma 1 holds. Let us suppose ( u I < ( u I and let us set c = z’ia and 

r = r’,u. Hence, uriu = &uu and uu;u = rluu so that uui = 11; and uz:; = L’~u. We 

are then led to the preceding case with I cl I = I 1)) - (~1. Inductively, one obtains for 

k = E( IPI/IuI): I’ = ~!~u~ and L” = r;uk with ili’k = r;u and ~1.; = &u. As Jul 2 1~1. one 

has L’k = 11; and Lemma 2 derives directly from Lemma 1. 0 

Let u be a fixed point in 1 A* of a substitution of constant length o on the set A, and 

let us suppose that all the letters of A are factors of u. It is clear that if u is periodic. 

with the period of length 8, then all the factors S”(a) are the same for any a E A. 

Reciprocally, if there exists c such that all the factors f“(rr). n E A, are the same, then 
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f”(l) is a periodic word of u of length CJ’. If any period of u is not a power of 6, the 

preceding property is not valid. If u is not periodic on an alphabet of two letters, the 

property is true, i.e. f is injective. In other words: 

Lemma 3. Let f be a constant length substitution on the set A = { 1,2), with the fixed 

point u in lA* and not periodic. Then f”( 1) #fk(2) ,f or an!’ integer k and for any ,fclctors 

m und m’ of A*, one hus f(m) =f(m’) * m = m’. 

Let m be a factor of u and set L,,(m) = Sup [k; mh 1 u). Let us estimate L,(m) when m is 

a letter or a word of two distinct letters. 

Lemma 4. Let u be a non-periodic minimal sequence, jixed point oj’a constant length 

o substitution f on the set A = { 1,2), curd let us suppose u in 1A”. Then CJ’ + o (resp. 

o3 + a2 + o) is an upper bound ,for L,,(l) and L,(2) (resp. L,(12) und L,(21)). 

Proof. Since u is not periodic, one has f(l)# l*. Furthermore, f(2)+ 2* because u is 

minimal. Two cases can occur. 

Case 1: Let us jirst suppose that f(2)+ l*. Then for any i E A, one has 

L,(i) < 24 I o2 + a). In fact, if there exists j E A such that L,(j) 2 2a so j2’ is 

a factor of u. As f is a constant length CJ substitution, one of the wordsf( 1) or f(2) is 

a factor of j2u. As ,f(l)$ l*, from f(1) E lA* and f(2)$2* one derives f(2) = 1”; 

a contradiction. 

Let us prove now that for any word tj E A2 such that i #,j, one has 

L,(g) < 20’ + o( I o3 + cr2 + o). Let us suppose that for a choice of ij one has 

L,,(ij) 2 202 + o. Thus, the word (ij)20’+0 IS a factor of u and can be decomposed as 

follows: s(f(a))f(bI) . . . f(b,,)p(f(c)). where bk E A for k E (1, . . .2aJ and 

a, c E A u {E]; s(f(a)) (resp. p(f(c))) denote a suffix off(a) (resp. a prefix of f(c)). If CJ is 

not odd, then for any k,f(bk) = (ij)6’2 or f(bk) = ( ji)0,‘2 and by Lemma 3, one has 

b, = b2 = . . = b,,; this is a contradiction because L,(b) < 20 for every b E A. If o is 

odd, for every k such that 1 < k < o one of these cases occurs: f(b2k_ 1) = (ij)(0-‘i2 (i) 

and f(b2k) = ( ji)‘“-‘“2 (j) or ,f(b2k_ 1) = (ji)@ l”’ (j) and f(bzk) = (ij)(ri-1)/2 (i). In 

any case, one has f(1) = (12)(n-1)‘2 (1) andf(2) = (21) ‘n-l)‘2 (2) so that u is periodic: 

a contradiction. 

Case 2: Let us now suppose that ,f (2) E 1 *. Thus. the letter 2 appears only in f(l). As 

f(l) E lA*, L,(2) < r~. Let us prove that L,(l) < a2 + cr. If L,(l) 2 c2 + O, then l(n’+“J 

is a factor of u and its following decomposition s(f(a))f(bI) . f(bU)p(f(c)) implies 

f(bk) = 1” for any kE il. . . . .u;. Hence, b, = b2 = . . . = b, = 2 so that L,(2) 2 a; 

a contradiction. 

Let us now estimate L,(ij), i #j. If L,(ij) 2 o3 + o2 + o, then as we have just shown 

there exists a factor m of u of length 0’ + CJ such that f(m) E (ij)* or f(m) E (ji)*. As 

1 is a prefix off(l) andf(2), one hasf(m) E (12)*. Hence G is not odd,f(l) = (12)“j2 and 

m = 1(Q’+(rJ; a contradiction because L,(l) < a2 + (r. q 
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Proposition 5. Let 1.4 be a jixed point of an injectiue substitution of constant length CT on 

the set A = il. 2. . , q>. Let us suppose u in lA*, u minimal and not periodic. The?1 

there e.uists Lo depending on CT and q such that ecery factor of u of length > Lo is 11 

rythmical one. 

Let us prove first Proposition 5 when A is a set of two elements: 

Proof. Let 171 be a factor of u such that /ml > Lo and let us suppose that m is not 

rythmical. Then there exists two different decompositions of m, Bf(D)C and B’f (D’)C’ 

with condition (2). We can suppose ICI # ICI. In fact if ICI = ICI, then C = C’ and 

JBI = ) B’I. Thus, B = B’ so that f’(D) =f(D’) and by Lemma 3, D = D’. Hence, we can 

choose ICI < IC’I and set C’ = XOC, IX,1 = r,O <r < CJ - 1. 

Let us set now D = ak . . . aI, D’= a$ . . . a;. One has Bf(a,) . ..f(a.) = 

B’f (a;) . . f(a;)Xo, k - 1 I g I k, where B and B’ are, respectively, suffixes off‘(b) 

andf’(b’) and X0 prefix off(ab). Moreover, bak . . . al and b’a$ . . . a’, a; are factors of 14. 

Let us set ak+l = b,a$+, = b’ and let us write f’(aI) = X,X,,f‘(a;) = X2X, with 

IX1 I = CT - r and IX,1 = r. We then get Bf(ak) . . . f(aJ = B’f(a$ . f(ai)Xz and 

recursively for i = 1, . . , k we can write 

f‘(a,) = U,K.f(al) = v:U,,.f(ai+l) = U,+I~: 

(3) 

Choosing L,, one has k 2 o3 + CJ’ + CT. Hence, D 1s not a factor in a word in 

l*u2* u(12)*. Let us write D = W W’ with 1 W 1 = E(k/2). As o 2 2, cz + (T is a lower 

bound for the lengths of W and W’ and by Lemma 4,1 and 2 are both factors of 

W and W’. If 21 is not a factor of W then W is a factor of a word in l* u2* so that 21 

is a factor of W’. In the same way if 12 is not a factor of W. then it is a factor of II”. 

Moreover, if 11 and 22 are not factors of D, then D is a factor of a word in (12)* which 

is a contradiction to Lemma 4. 

Finally, we have (12,21,11) c F2(D) or j12,21,22) c F?(D). 

Let us set j’(1) = UV and ,f(2) = U’T/’ with IUI = IU’I = r. By (3) E = 

(VU’. V’U, VU] or E’ = (VU’, I/‘U, V’U’), is included in { UV, U’V’). As the hypoth- 

esis f(1) E lA* which gives the difference between the letter 1 and the letter 2 will not 

be used later, we can suppose E c {UP’, U’V’]. 

If E is a set of one element, then V = I/’ and U = U’ so that f(1) =f(2) which 

contradicts the fact that u is not periodic. Hence E is a set of two elements. If U = U’. 

then E = (VU, V’U) so that UV = VU and UP” = V’U or UV = V’U and 

c/V’ = VU. Lemma I in the first case and Lemma 2 in the second case yields the 

contradictionf( 1) = f (2). If I/ = V’, the same argument gives the same contradiction. 

We can now suppose U # U’ and ‘v # I/‘. Then E is a set of three elements and this is 

out of question. 0 
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The preceding proof shows that if a factor D of u is such that the words 12,21 and one 

of the words 11 or 22 are both factors of D, then f(D) is rythmical. Let us summarize: 

Propositon 6. Let f be ~1 substitution of constant length g on the set A = { 1,2) ad let 

u be u fixed point oj’f. minimal und not periodic. Let L1 he the least integer g such that 

12,21 and one of the uvrds 11 or 22 UYL’ both jizctors of ever)’ j&or of u of length 2 g. 

Then ever!, fuctor of u of length 2 a(L, + 1) is rythmiccrl. 

Let us prove now Proposition 5 in the general case. 

Proof. We shall proceed as follows. 

Let u be a fixed point of an injective substitution f of constant length 0 on the set 

A = II,‘, . . . *q) with q 2 3. Let us suppose that u is minimal and not periodic. We 

shall show that there exists a constant H depending on (T and q such that if there exists 

a factor m of u of length 2 H which is not rythmical, then there exists an integer 

d divisor of G and a substitution F of constant length G on an alphabet P such that 

P c Ad, Card(P) I q - 1 and F(u) = u, looking u as an infinite word on the alphabet 

P. Moreover, m can be read like an element of P* and one can prove that it is not 

a rythmical factor on the alphabet P. As the length of 171 in P is /ml/d, we get 

a contradiction if 1 m 1 2 z LO(o, q - 1). 

In the case A = [ 1,2) the proof was to show that if there does not exists a rythmical 

factor of any length, then j’( 1) =f(2). In other words, j‘ could be seen as defined on an 

alphabet of one letter. We shall follow this idea in three steps. beginning by the 

generalization of Lemma 2. 

Step 1. 

Lemma 5. Let M be a set of words of length o on an alphabet A. Let U = P,(M) (resp. 

V = S,_,(M)) be the set of the prqjixes (resp. sufixes) of length r (resp. cr - r) of the 

words of M. Moreover, let us suppose 

V = P,_,(M) and U = S,(M). (4) 

Let d = gcd(o,r) and P be the set of the prt$.xes of length d of the bvords of M. Then 

McP”. 

Proof. Even if we have to permute U and V, we can suppose r I (T - r. Let L’ be 

a word of V. There exists m E M and 11 E U such that m = UC. As 1: is prefix of a word 

roll of M, there exists U’ E U such that r)tl = vu’ and by (4), there exists ~1~ E U and 

~1~ E V such that in1 = VU’ = ultil. We can then write ~1 = ul\~sl so that m = uulwl. In 

other words, M c UU WI ( = U2 W,) where WI is the set of the suffixes of length 

~7 - 2r of the words of M. Let W,_ 1 be the set of the suffixes of length 0 - kr ( 2 0) of 

the words of M. 

Let us now suppose that M c Uk W,_ 1 for an integer k such that g 2 (k + 1)r. As 

V = P,_,(M) one has, as above, V c UkW,. M c V’ implies M c Uhcl Wk so that 

v c U’+‘Wk+l. 
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Let us repeat this process until t = E(a/r). As every word m of M can be written as 

m = UP and m = L”u’, respectively, in UT/ and VU with V = U’- ’ W,_ 1. one has 

I , I m = u1 . . . U,M‘ = u1 . u,-1’1’ u,, u,,u: E u, u’,\V’E w,_,. (5) 

In particular, ZI,\V = i~‘ui. 

If 0 = t.r then W,_, is empty and the lemma is proved. If g # t.r. let us set 

M’ = S,,(M) for p = CJ - (t - l)r, U’ = U and V’ = W,_,. 

From the hypothesis on U and V one has SI,_,.(M’) = S,,_,(M) = S,,_,(V) = V’ and 

by (5) P,,_,(M’) = V’. Furthermore. U = S,(M) = S,(M’) = S,(V) and by (5). one has 

S,(V) = P,(M’). Finally, U’ = P,(M’) = SJM’) and V’ = S,,_,(M’) = P,_,(M’). 

Hence, we are led back to the preceding case with p and p - r replacing, respective- 

ly, 0 and r, and the same gtd. Thus, if Lemma 5 is proved for M’, then U’ and V’ are in 

P* so that M is in P*. As Lemma 5 is evident for g = 2d and if it is true for the 

multiples 2d,3d, . . . ,kd, then the preceding argument shows that it is true for 

G = (k + 1)d. Hence. Lemma 5 is proved recursively on the multiples of 0. q 

Step 2. Let Lz depending on CJ and q be a constant such that for every factor m of 

II of length 2 Lz one has F,(m) = F*(u). 

We may choose Lz such that it depends on J but in any case 20’~ - 1 holds always. 

Infactifm/~andIml>20’4- 1, then there is a factor of m which can be written as 

f’“(u). Let E,(a) be the set of the factors of length 2 which appears in one of the words 

,f(a). . ,,fk(n). If &+i(a) = E,(a), this means that for every UL’ E &(a), one has 

P?(uv) c Ek((l). so Ek+,,((l) = EL(u) for any n 2 0, and this equality holds as soon as 

li 2 Card(A’) = q”. 

Let us choose now H = a(L, + 1). Let m be a factor of 1i such that Irnl 2 H. 

and let us suppose m not rythmical. Then there exists two different decompositions 

of 111: 

Bf(D)C = B’,f(D’)C’ with condition (2). (6) 

As for the proof for two letters, we can write D = ab . . . aI, D’ = u$ . . u’, with 

k - 1 5 y I k. Thus, Bf(ak) . . f(ui) = B’f (a$) . . . f(u;)X, where B and B’ are. res- 

pectively. suffixes of f(b) and f(b’), X0 prefix of length r of f(ub) and huk LI, 

and h’u$ . . u;uh factors of il. Let us set h = u,, + 1 and b’ = ai+ 1. We have again the 

relation (3). 

Let M =f(A), U = Pi(M) and V = S,_,(M). For a choice of H, one has k 2 Lz. 

Every letter of A appears in uk . . u1 and ub . . u’, so that by (3) S,.(M) = U. Further- 

more, every letter of A appears also in uk + 1 . . u2 and by (3), P,_,(M) = V. By Lemma 

5, M c P* for P = P,(M) = Sd(M) with d = gcd(a,r). 

Let us suppose Card(P) = Card(A). Then the images ,f(u) are determinated by their 

prefixes (or suffixes) of length d and there exists bijections B: A + U. T : A -+ V./T’ : 

A + U and 5’: A -+ V such that for every u E A,,f(u) = p(u)r(a) = t’(u)p’(u). If the 

word of two letters LI’U is a factor of D, then by (2), /?(a’) = /?(a) so that a = ,!- ’ /?‘(a’). 

Let us set 6 = fi-‘fi’. Then S is a bijection in A and bD = b6(b) . . . sk(b). 
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As every letter is in D, 6 is a bijection order q. Furthermore, as every factor of u of 

length 2 is in D, they have necessarily the form &(a) so that u = lS(l)S’(l) . . . This 

means uk = hk(u,,) which yields the contradiction that u is periodic. 

Let us suppose that Card(P) < Card(A) and let us call $ the canonical imbedding of 

P* into A* which will be extended to M(P). As f(A) = M c P*, we can see the words 

of M(M) like words of M(P). Let 4 : M(M) + M(P) denote this identification and let 

h : M (A) + M(M) be the application induced by the substitution 5 Let F = 4 J h I) 

and u^ = $(/r(u)). By construction, u^ is the sequence u after grouping in successive 

words of d letters. 

This means u*, = u,~ . u(, + 1 jd 1, and F is a substitution of constant length CJ on the 

alphabet P. The infinite word u^ of P” is a fixed point of F which is minimal by 

Proposition 2. 

Step 3. Let us prove that m (satisfying (6)) can be seen like a factor of t. In fact, 

B and B’ are suffixes of words of A4 of length multiples of d and C and C’ are prefixes of 

words of M that are also multiples of d. Let us remark that the decompositions of 

m come from the decomposition of u in successive blocks of 0 letters given by u =f(u). 

Considering u^ and F, the decomposition (s) of m is (are) a consequence of the 

decomposition of 2; in blocks of ad letters: 

u* = [(u(J . . . Lid_ 1) . . . (ud(o_ 1) . . . %io~l)lc(%r7 ... 4i(o+l~-l) ... 04(20-l) “. UZdri-I)1 ... 

Every block can be seen as 0 factors of words in P (of d letters) or as d factors of 

words in M (of (T letters). 

One derives that the decomposition Bf(D)C implies the decomposition 

BB, F(D1)CIC of m with B1 =f(A) (resp. C1 =f(p)) w h ere J. (resp. ~1) is a prefix (resp. 

a suffix) of D. In the same way the decomposition B’f(D’)C’ gives 

B’f(i’)F(D;)f(p’)C’. In particular, if 1y1 is rythmical on the alphabet P, then 

1 Bf(A) 1 = 1 B’f(3,‘) 1 so that 1 B 1 - I B’I is a multiple of 0 and this is quite of the question. 

Hence, m is not rythmical on P and the length of ~1, seen like a word in P, is at least 

21ml/o 2 2H/o. 

Let us choose now &(a, y) = cr ‘(qfl) for 4 2 3. (The value for q = 2 is bigger than 

the value we have already obtained.) As H(a, q) I ZCJ~~+‘, if Irnl 2 L,(o, q), one has 

Irnl 2 Hand 21ml/o 2 20 2q+ ’ 2 L,(cr, q’) for any q’ = 2, . . . ,q - 1. If the proposition 

is proved for alphabets with number of letters I q - 1, then every factor in of u of 

length 2 L,(a,q) is rythmical on the alphabet A. 0 

Remark 3. The constant L,, = rrzcq+ ‘) gives the minimal length of the word m to be 

rythmical but it is not the “best possible”. In fact, for example, Lo = 64 for the Morse 

sequence but one can easily prove that every factor of length 2 4 is rythmical, and 4 is 

the optimal value. 

Remark 4. As shown in the following example, the hypothesis that u is not periodic in 

Proposition 5 is necessary. Let A = {a,b},f3(a) = uba and f3(b) = bub. SO f3 is 
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injective and of length 3. Furthermore, f;(a) = (ab)“’ is a fixed point of f3. As a 1 f,(a) 

and a ) f3(b) and from Proposition 3(iii), f?(a) is minimal. For every n 2 1, (ab)6” is not 

a rythmical factor of f”‘(u). In fact, (ab)‘” = &,f((ub)2”).& = a.f((bu)2”-1.b).ub. 

Propositon 7. Ecery suffix of a special factor is special. 

Proof. Let w = .YZ: be a special factor. For every letter i E A, xi = wi is a factor of u so 

that pi is a factor of U. Then c’ is special. 0 

The following corollary is immediate. 

Corollary. ZfFS(p) is empty, then for any n 2 p, FS(n) is empty. 

4. Inductive construction of special factors 

Let II 2 LO be an integer, where L, is the constant of Proposition 5. For two 

different letters i and j, Pi,, (resp. P) will denote the greatest common prefix of f(i) and 

f(j) (resp. the greatest common prefix of all the f(i)). Let us set CI,.~ = 1 P,.,I and 

3: = JPJ. 

Theorem 1. If there exist two different letters i and j such that P,,, # P, then there is no 

speciul fuctor of length n > LO. 

Proof. By contraposition: Let us suppose that E’S,(u) is non-empty and let 

u’ = xf (u)v be a decomposition of a special factor of length n > LO. By Proposition 

5 this decomposition is unique. Then for every letter i E A, wi is a factor of U. Any one 

of the Card(A) different factors J’i is a prefix of exactly one f(k). 

Since this connexion is bijective, one has Pi,j = 4’ for every couple (i, j) of two 

different letters. 0 

Theorem 2. Let k be the least integer such that ak + CI 2 n and let us suppose that for 

un_v two diflerent letters i and j, Pi.j = P. Then the special factors of length n > LO are 

suJi.~es of length (n-cr) of the images of the special factors of length k to which one hus 

concatenated at right P. 

Proof. Let us prove first that the construction above gives special factors. 

Let t’ be a special factor of length k. Then for every letter i E A, ci is a factor of U. It is 

the same for its image whose length is ok + o. The prefixf (u).P of length ak + c( of the 

image f (zli) is special because P = Pi,j. From Proposition 7, it is the same for all its 

suffixes. 
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Let us prove now that every special factor of length > Lo can be obtained by 

the construction of Theorem 2. Let M’ be a special factor of length n > Lo. By 

Proposition 5, MI is rythmical: w = xf(c)y, where x is a strict suffix of exactly onef‘( j) 

and y is a strict prefix of exactly one ,f(k). So w is a factor of ,f( jck) with jvk factor of u. 

Since w is special, wi is a factor of u for every letter i E A. Any one of these different 

Card(A) factors yi is a prefix of exactly one f(k), and this connexion is bijective. Hence 

y = P and jtl special. Finally, MI = xf(u)P where xf(c) is a suffix of f( jr) with jc 

special. 0 

Example 5. In the Morse sequence, every factor of length 2 4 is rythmical; further- 

more, P(5) = 12 and P(6) = 16. As c( = 0, the 4 special factors of length 5 are the 

suffixes of length 5 of the images of the special factors of length 3 which are 

112,121,212 and 221. One hasf,(112) = 121221,,f,(121) = 122112,f,(212) = 211221 

and .f;(221) = 212112 so that the special factors of length 5 are 21221,22112,11221 

and 12112. 

Example 6. Let u be the fixed point in lA* of the substitution fh on the alphabet 

A = (1,2) defined by f4(1) = 112 and f,(2) = 111. Every factor of u of length 2 5 is 

rythmical. Furthermore P(5) = 8 and P(6) = 9. As c( = 2, the special factor of length 

5 is the suffix of length 3 of the image of the special factor of length 1 to which one has 

concatenated at right P = 11. 1 is the special factor of length 1 and we have 

f4(1) = 112 so that 11211 is the special factor of length 5. 

5. Conclusion 

The inductive method described above shows that if a sequence satisfies (*), it must 

be such that for any two different letters i and j, Pi.j = P. Other considerations bring 

us to assume that these sequences have a non-linear complexity between (k - 1)n + 1 

and kn + 1. 

Therefore, P(n + 1) - P(n) is not constant; so, a geometric representation will be 

(probably) more difficult to get. 

Nevertheless, since this difference takes only a finite number of values, we hope to 

succeed . . . One could start with sequences such that Card(P(n + 1) - P(n); 

II E N*j = 2 before trying to get an inductive procedure. 
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